

Doors?

❖ Have trouble opening doors?

Doors?

- There are psychological principles that can be followed to make these things understandable and usable.
- Suppose you come to a door:
 - In which direction does it open?
 - Should you **pull** or **push**, on the **left** or the **right**?
 - Maybe the door slides. If so, in which direction?

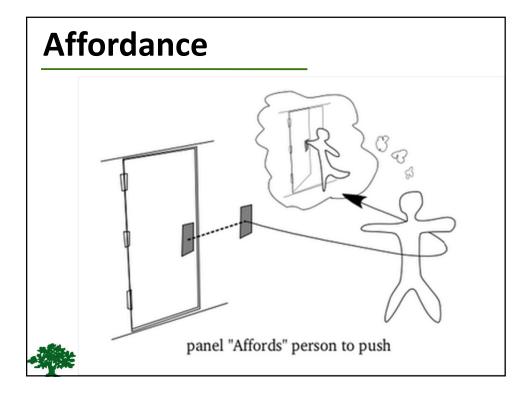
Visibility (Signifiers)

- The correct parts must be visible, and they must convey the correct message.
- With doors that push, the designer must provide signals that naturally indicate where to push.
- We call the use of natural signals natural design.

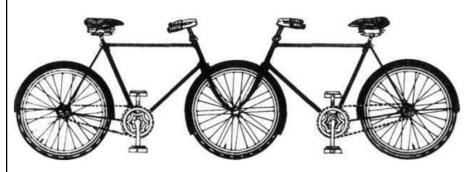
Visibility Problems

- The mappings between what you want to do and what appears to be possible.
- ***** Example: sliding windows:
 - One button to do two things?
 - What is the mapping?
 - How can you figure out how to control the slides?

You can't.


Affordance

- ❖ Affordance refers to the perceived and actual properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used.
- Example: A chair affords ("is for") support and, therefore, affords sitting.

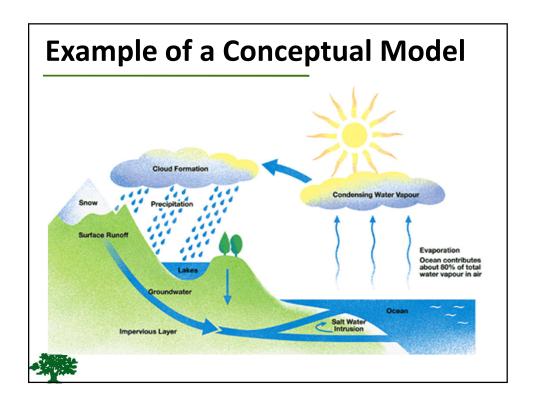

Affordance: the relationship between an object and a person.

1.7 Carelman's Tandem "Convergent Bicycle (Model for Fiances)." Jacques Carelman: "Convergent Bicycle" Copyright © 1960-76-80 by Jacques Carelman and A. D. A. G. P. Paris. From Jacques Carelman, *Catalog of Unfindable Objects*, Balland, editeur, Paris-France. Used by permission of the artist.

Conceptual Models

- Convergent Bicycle: You know it won't work because you form a conceptual model of the device and mentally simulate its operation.
- You can do the simulation because the parts are visible and the implications clear.
- Other clues to how things work come from their visible structure -in particular from affordances, constraints, and mappings.

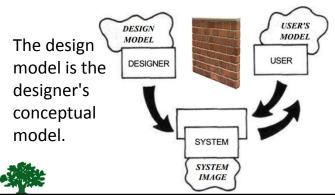
Good Design?


- The fundamental principles of designing for people:
- Provide a good conceptual model and
- 2. Make things **visible**.

Good Conceptual Model

- Conceptual model is an explanation usually highly simplified of how something work.
- ❖ A good conceptual model allows us to predict the effects of our actions.
- ❖ Without a good model we operate blindly.
- A good model for every day things, conceptual models need **not** be very **complex**.

Control of the Refrigerator!



Wrong Conceptual Model?

- Given the correct model, life would be much easier.
- Why did the manufacturer present the wrong conceptual model?

The user's model is the mental model developed through interaction with the system.

System Image

- The system image results from the physical structure that has been built (including documentation, instructions, and labels).
- ❖ If the system image does not make the design model clear and consistent, then the user will end up with the wrong mental model.

Mapping

- Mapping is a technical term meaning the relationship between two things.
- Consider the mapping relationships involved in steering a car.

Natural Mapping

- Taking advantage of physical analogies and cultural standards, leads to immediate understanding.
- For example, a designer can use spatial analogy:
 - To move an object up, move the control up.
 - To control an array of lights, arrange the controls in the same pattern as the lights.

Artillery vs. Angry Birds!!!! NIND:6 ANG, FORCE?42,16

Feedback

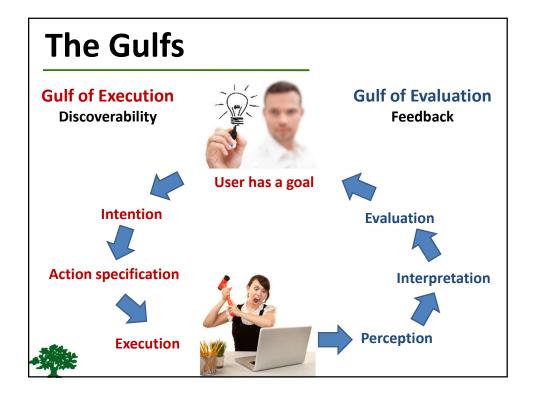
Sending back to the user information about what action has actually been done, what result has been accomplished.

Designing Well is Not Easy!!!

- The manufacturer wants something that can be produced economically.
- ❖ The **store** wants something that will be **attractive** to its customers.
- The customer has several demands:
 - In the store, he/she focuses on price and appearance, and perhaps on price.
 - At home, the same person will pay more attention to functionality and usability.
- ❖ The repair service cares about maintainability: how easy is the device to take apart, diagnose, and service?
- ❖ The needs of those concerned are different and often conflict.
- ❖ Nonetheless, the designer maybe able to satisfy everyone.

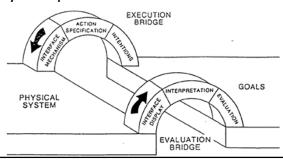
Curve of Complexity

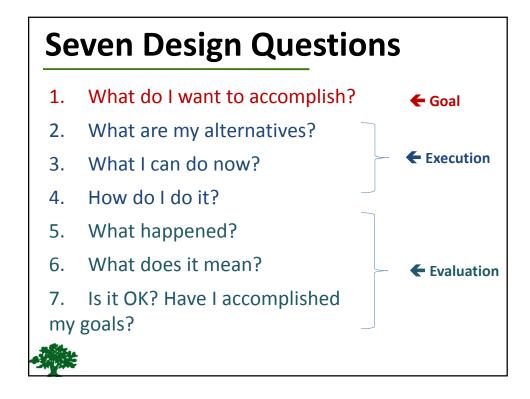
- The development of a technology tends to follow a U-shaped curve of complexity:
 - Starting high.
 - Dropping to a low, comfortable level.
 - Then climbing again.



Norman's Principles

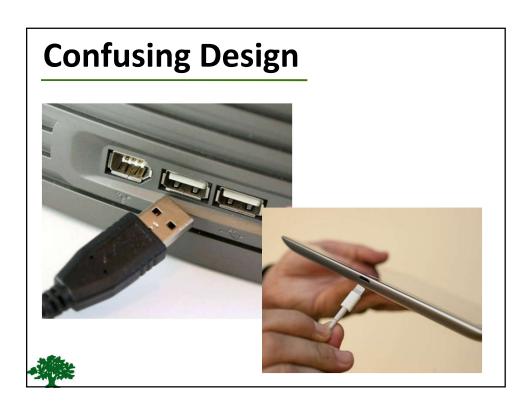
- 1. Forming a goal
- 2. Forming an intention
- 3. Specifying an action
- 4. Executing the action
- **5. Perceiving** the state of the system
- **6. Interpreting** the state of the system
- **7. Evaluating** the outcome

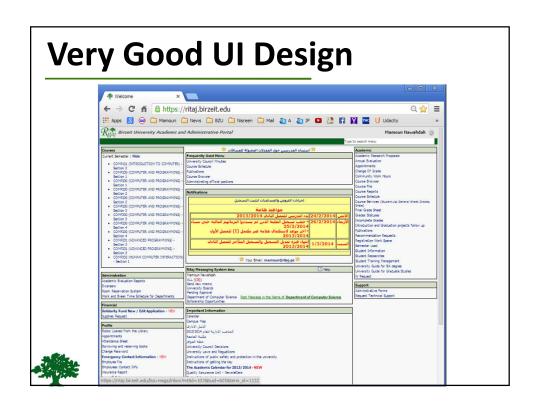




Bridging the Gulfs

- ❖ The goals for a designer are:
 - Bridging the gulf of execution: Design system to ease process of getting from the intention to the execution.
 - Bridging the gulf of evaluation: Design system so that response after the user has performed an action can be easily interpreted and then evaluated.


1st Assignment


- Understandable and Confusing Design:
 - Take a photo of a design you think is understandable and another one that you think is confusing.
 - Report:
 - What do you think makes the designs understandable and/or confusing?
 - For each, determine the following: affordance,
 signifier, mapping -if any-, and feedback -if any-



